A generalized Cartan isomorphism for the Grothendieck group of a finite group
نویسندگان
چکیده
منابع مشابه
On a conjecture of a bound for the exponent of the Schur multiplier of a finite $p$-group
Let $G$ be a $p$-group of nilpotency class $k$ with finite exponent $exp(G)$ and let $m=lfloorlog_pk floor$. We show that $exp(M^{(c)}(G))$ divides $exp(G)p^{m(k-1)}$, for all $cgeq1$, where $M^{(c)}(G)$ denotes the c-nilpotent multiplier of $G$. This implies that $exp( M(G))$ divides $exp(G)$, for all finite $p$-groups of class at most $p-1$. Moreover, we show that our result is an improvement...
متن کاملFuzzy subgroups of the direct product of a generalized quaternion group and a cyclic group of any odd order
Bentea and Tu{a}rnu{a}uceanu~(An. c{S}tiinc{t}. Univ. Al. I.Cuza Iac{s}, Ser. Nouv{a}, Mat., {bf 54(1)} (2008), 209-220)proposed the following problem: Find an explicit formula for thenumber of fuzzy subgroups of a finite hamiltonian group of type$Q_8times mathbb{Z}_n$ where $Q_8$ is the quaternion group oforder $8$ and $n$ is an arbitrary odd integer. In this paper weconsider more general grou...
متن کاملOn the planarity of a graph related to the join of subgroups of a finite group
Let $G$ be a finite group which is not a cyclic $p$-group, $p$ a prime number. We define an undirected simple graph $Delta(G)$ whose vertices are the proper subgroups of $G$, which are not contained in the Frattini subgroup of $G$ and two vertices $H$ and $K$ are joined by an edge if and only if $G=langle H , Krangle$. In this paper we classify finite groups with planar graph. ...
متن کاملThe Grothendieck Group
In the red corner, topological K-theory! The study of stable equivalences of vector bundles over a topological space, and the engine behind Bott periodicity, a result whose reverberations are felt throughout algebraic topology. In the blue corner, modular representation theory! The story of representations in positive characteristic, where the CDE triangle powers applications in group theory an...
متن کاملMotivic Integration and the Grothendieck Group of Pseudo-Finite Fields
Motivic integration is a powerful technique to prove that certain quantities associated to algebraic varieties are birational invariants or are independent of a chosen resolution of singularities. We survey our recent work on an extension of the theory of motivic integration, called arithmetic motivic integration. We developed this theory to understand how p-adic integrals of a very general typ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1978
ISSN: 0022-4049
DOI: 10.1016/0022-4049(87)90003-x